\checkmark Main ideas:

1. Identify and model points, lines, and planes.
2. Identify collinear and coplanar points and intersecting lines and planes in space.

CA Standards: 1
Points, lines, and planes are called undefined terms because they do not have any actual size.
(Table is on page 6 of textbook.)

KEY CONCEPT		Points, Lines, and Planes	
	Point	Line	Plane
Model	${ }^{\bullet} P$	$\xrightarrow{A} \xrightarrow{B}$	$\left[\begin{array}{cc} \bullet X & \bullet Y \\ \bullet Z & I \end{array}\right]$
Drawn	as a dot	with an arrowhead at each end	as a shaded, slanted 4-sided figure
Named by	a capital letter	the letters representing two points on the line or a lowercase script letter	a capital script letter or by the letters naming three noncollinear points
Facts	A point has neither shape nor size.	There is exactly one line through any two points.	There is exactly one plane through any three noncollinear points.
Words/ Symbols	point P	line n, line $A B$ or $\overleftrightarrow{A B}$, line $B A$ or $\overleftrightarrow{B A}$	plane \mathcal{T}, plane $X Y Z$, plane $X Z Y$, plane $Y X Z$, plane $Y Z X$, plane $Z X Y$, plane $Z Y X$

A point is simply a location. A line is made up of points, and has no thickness of width.
A plane is a flat surface made up of points. It has not depth and it extends infinitely in all directions.
"co" = \qquad
Collinear means
\qquad -.

Use the figures on the left to name each of the following: 1) A line containing point C
2) A plane containing point C
3) Two coplanar lines
4) Two non-collinear points
5) Two collinear points
6) Point where all the lines intersect \qquad 7) A line that intersects plane M
8) What does line t intersect?

Name the geometric term modeled by:
11) the tip of the pole
12) the pole \qquad
13) the flag \qquad
14) the stripes \qquad
9) How many planes are shown in the figure to the left?
10) Are points C, D, E and Q coplanar? Explain. \qquad

